Real eigenvalues in the non-Hermitian Anderson model

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classes of non-Hermitian operators with real eigenvalues

Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is...

متن کامل

Ela Classes of Non-hermitian Operators with Real Eigenvalues

Classes of non-Hermitian operators that have only real eigenvalues are presented. Such operators appear in quantum mechanics and are expressed in terms of the generators of the Weyl-Heisenberg algebra. For each non-Hermitian operator A, a Hermitian involutive operator Ĵ such that A is Ĵ-Hermitian, that is, ĴA = AĴ , is found. Moreover, we construct a positive definite Hermitian Q such that A is...

متن کامل

Simplicity of Eigenvalues in the Anderson Model

We give a simple, transparent, and intuitive proof that all eigenvalues of the Anderson model in the region of localization are simple. The Anderson tight binding model is given by the random Hamiltonian Hω = −∆ + Vω on 2(Z), where ∆(x, y) = 1 if |x − y| = 1 and zero otherwise, and the random potential Vω = {Vω(x), x ∈ Zd} consists of independent identically distributed random variables whose c...

متن کامل

Acceleration of the Arnoldi method and real eigenvalues of the non-Hermitian Wilson-Dirac operator

In this paper, we present a method for the computation of the low-lying real eigenvalues of the Wilson-Dirac operator based on the Arnoldi algorithm. These eigenvalues contain information about several observables. We used them to calculate the sign of the fermion determinant in oneflavor QCD and the sign of the Pfaffian in N = 1 super Yang-Mills theory. The method is based on polynomial transf...

متن کامل

Non-Hermitian Hamiltonians with real and complex eigenvalues in a Lie-algebraic framework

We show that complex Lie algebras (in particular sl(2,C)) provide us with an elegant method for studying the transition from real to complex eigenvalues of a class of non-Hermitian Hamiltonians: complexified Scarf II, generalized Pöschl-Teller, and Morse. The characterizations of these Hamiltonians under the so-called pseudoHermiticity are also discussed. PACS: 02.20.Sv; 03.65.Fd; 03.65.Ge

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Applied Probability

سال: 2018

ISSN: 1050-5164

DOI: 10.1214/18-aap1383